2024
2024
2022
29 Liang, Z. et al. Intestinal CXCR6+ ILC3s migrate to the kidney and exacerbate renal fibrosis via IL-23 receptor signaling enhanced by PD-1 expression. Immunity, doi:https://doi.org/10.1016/j.immuni.2024.05.004 (2024).
28 Döring, Y. et al. Identification of a non-canonical chemokine-receptor pathway suppressing regulatory T cells to drive atherosclerosis. Nature Cardiovascular Research 3, 221-242, doi:10.1038/s44161-023-00413-9 (2024).
27 Dong, Y. et al. Single-cell profile reveals the landscape of cardiac immunity and identifies a cardio-protective Ym-1(hi) neutrophil in myocardial ischemia-reperfusion injury. Science bulletin 69, 949-967, doi:10.1016/j.scib.2024.02.003 (2024).
26 Chen, W. et al. Single-cell profiling reveals kidney CD163+ dendritic cell participation in human lupus nephritis. Annals of the rheumatic diseases, ard-2023-224788, doi:10.1136/ard-2023-224788 (2024).
24 Tufanli, O., Citir, M., Yin, C., Van der Vorst, E. P. C. & Cimen, I. Editorial: The connections of immune metabolic mechanisms with aging-related diseases. Frontiers in cell and developmental biology 11, doi:10.3389/fcell.2023.1295264 (2023).
23 Mohanta, S. K., Yin, C., Weber, C. & Habenicht, A. J. R. Neuroimmune cardiovascular interfaces in atherosclerosis. Frontiers in cell and developmental biology 11, 1117368, doi:10.3389/fcell.2023.1117368 (2023).
22 Mohanta, S. K. et al. Cardiovascular Brain Circuits. Circulation research 132, 1546-1565, doi:doi:10.1161/CIRCRESAHA.123.322791 (2023).
21 Mohanta, S. K. et al. The Impact of the Nervous System on Arteries and the Heart: The Neuroimmune Cardiovascular Circuit Hypothesis. Cells 12, doi:10.3390/cells12202485 (2023).
18 Sun, T. et al. Tissue Clearing Approaches in Atherosclerosis. Methods Mol Biol 2419, 747-763, doi:10.1007/978-1-0716-1924-7_45 (2022).
17 Mohanta, S. K., Weber, C., Yin, C. & Habenicht, A. J. R. The dawn has come for new therapeutics to treat atherosclerosis: Targeting neuroimmune cardiovascular interfaces in artery brain circuits. Clinical and translational medicine 12, e1040, doi:10.1002/ctm2.1040 (2022).
16 Mohanta, S. K. et al. Neuroimmune cardiovascular interfaces control atherosclerosis. Nature 605, 152-159, doi:10.1038/s41586-022-04673-6 (2022).
14 Varasteh, Z. et al. Imaging atherosclerotic plaques by targeting Galectin-3 and activated macrophages using ((89)Zr)-DFO- Galectin3-F(ab')(2) mAb. Theranostics 11, 1864-1876, doi:10.7150/thno.50247 (2021).
12 Hu, D., Yin, C., Luo, S., Habenicht, A. J. R. & Mohanta, S. K. Vascular Smooth Muscle Cells Contribute to Atherosclerosis Immunity. Frontiers in immunology 10, 1101, doi:10.3389/fimmu.2019.01101 (2019).
10 Newland, S. A. et al. Type-2 innate lymphoid cells control the development of atherosclerosis in mice. Nature Communications 8, 15781, doi:10.1038/ncomms15781
https://www.nature.com/articles/ncomms15781#supplementary-information (2017).
7 Mohanta, S., Yin, C., Weber, C., Hu, D. & Habenicht, A. J. Aorta Atherosclerosis Lesion Analysis in Hyperlipidemic Mice. Bio-protocol 6 (2016).
6 Hu, D., Yin, C., Mohanta, S. K., Weber, C. & Habenicht, A. J. Preparation of Single Cell Suspensions from Mouse Aorta. Bio-protocol 6 (2016).
4 Hu, D. et al. Artery Tertiary Lymphoid Organs Control Aorta Immunity and Protect against Atherosclerosis via Vascular Smooth Muscle Cell Lymphotoxin β Receptors. Immunity 42, 1100-1115, doi:10.1016/j.immuni.2015.05.015 (2015).
2 Long, Q. et al. Peroxisome proliferator-activated receptor-gamma increases adiponectin secretion via transcriptional repression of endoplasmic reticulum chaperone protein ERp44. Endocrinology 151, 3195-3203, doi:en.2009-1501 [pii]
10.1210/en.2009-1501 (2010).
2023
2021
2019
2017
2016
2015
2014
2010
2009
PUBLICATIONS
First/Corresponding authored publications by our group are indicated in bold
2025
Publications
First/Corresponding authored publications by our group are indicated in bold
Yin Laboratory, Institute of Precision Medicine
The First Affiliated Hospital, Sun Yan-Sen University
No.1,Zhongshaner Road,Yuexiu District
510080Guangzhou,China
2024
29 Liang, Z. et al. Intestinal CXCR6+ ILC3s migrate to the kidney and exacerbate renal fibrosis via IL-23 receptor signaling enhanced by PD-1 expression. Immunity, doi:https://doi.org/10.1016/j.immuni.2024.05.004 (2024).
28 Döring, Y. et al. Identification of a non-canonical chemokine-receptor pathway suppressing regulatory T cells to drive atherosclerosis. Nature Cardiovascular Research 3, 221-242, doi:10.1038/s44161-023-00413-9 (2024).
27 Dong, Y. et al. Single-cell profile reveals the landscape of cardiac immunity and identifies a cardio-protective Ym-1(hi) neutrophil in myocardial ischemia-reperfusion injury. Science bulletin 69, 949-967, doi:10.1016/j.scib.2024.02.003 (2024).
26 Chen, W. et al. Single-cell profiling reveals kidney CD163+ dendritic cell participation in human lupus nephritis. Annals of the rheumatic diseases, ard-2023-224788, doi:10.1136/ard-2023-224788 (2024).
2023
24 Tufanli, O., Citir, M., Yin, C., Van der Vorst, E. P. C. & Cimen, I. Editorial: The connections of immune metabolic mechanisms with aging-related diseases. Frontiers in cell and developmental biology 11, doi:10.3389/fcell.2023.1295264 (2023).
23 Mohanta, S. K., Yin, C., Weber, C. & Habenicht, A. J. R. Neuroimmune cardiovascular interfaces in atherosclerosis. Frontiers in cell and developmental biology 11, 1117368, doi:10.3389/fcell.2023.1117368 (2023).
22 Mohanta, S. K. et al. Cardiovascular Brain Circuits. Circulation research 132, 1546-1565, doi:doi:10.1161/CIRCRESAHA.123.322791 (2023).
21 Mohanta, S. K. et al. The Impact of the Nervous System on Arteries and the Heart: The Neuroimmune Cardiovascular Circuit Hypothesis. Cells 12, doi:10.3390/cells12202485 (2023).
18 Sun, T. et al. Tissue Clearing Approaches in Atherosclerosis. Methods Mol Biol 2419, 747-763, doi:10.1007/978-1-0716-1924-7_45 (2022).
17 Mohanta, S. K., Weber, C., Yin, C. & Habenicht, A. J. R. The dawn has come for new therapeutics to treat atherosclerosis: Targeting neuroimmune cardiovascular interfaces in artery brain circuits. Clinical and translational medicine 12, e1040, doi:10.1002/ctm2.1040 (2022).
16 Mohanta, S. K. et al. Neuroimmune cardiovascular interfaces control atherosclerosis. Nature 605, 152-159, doi:10.1038/s41586-022-04673-6 (2022).
2021
14 Varasteh, Z. et al. Imaging atherosclerotic plaques by targeting Galectin-3 and activated macrophages using ((89)Zr)-DFO- Galectin3-F(ab')(2) mAb. Theranostics 11, 1864-1876, doi:10.7150/thno.50247 (2021).
12 Hu, D., Yin, C., Luo, S., Habenicht, A. J. R. & Mohanta, S. K. Vascular Smooth Muscle Cells Contribute to Atherosclerosis Immunity. Frontiers in immunology 10, 1101, doi:10.3389/fimmu.2019.01101 (2019).
10 Newland, S. A. et al. Type-2 innate lymphoid cells control the development of atherosclerosis in mice. Nature Communications 8, 15781, doi:10.1038/ncomms15781
https://www.nature.com/articles/ncomms15781#supplementary-information (2017).
7 Mohanta, S., Yin, C., Weber, C., Hu, D. & Habenicht, A. J. Aorta Atherosclerosis Lesion Analysis in Hyperlipidemic Mice. Bio-protocol 6 (2016).
6 Hu, D., Yin, C., Mohanta, S. K., Weber, C. & Habenicht, A. J. Preparation of Single Cell Suspensions from Mouse Aorta. Bio-protocol 6 (2016).
4 Hu, D. et al. Artery Tertiary Lymphoid Organs Control Aorta Immunity and Protect against Atherosclerosis via Vascular Smooth Muscle Cell Lymphotoxin β Receptors. Immunity 42, 1100-1115, doi:10.1016/j.immuni.2015.05.015 (2015).
2010
2 Long, Q. et al. Peroxisome proliferator-activated receptor-gamma increases adiponectin secretion via transcriptional repression of endoplasmic reticulum chaperone protein ERp44. Endocrinology 151, 3195-3203, doi:en.2009-1501 [pii]
10.1210/en.2009-1501 (2010).
2009
Yin Laboratory, Institute of Precision Medicine
The First Affiliated Hospital, Sun Yan-Sen University
No.1,Zhongshaner Road,Yuexiu District
510080Guangzhou,China