top of page

2024

2024

2022

30   Zhang, Y. et al. CCL19-producing fibroblasts promote tertiary lymphoid structure formation enhancing anti-tumor IgG response in colorectal cancer liver metastasis. Cancer Cell 42, 1370-1385.e1379, doi:https://doi.org/10.1016/j.ccell.2024.07.006 (2024).


29    Liang, Z. et al. Intestinal CXCR6+ ILC3s migrate to the kidney and exacerbate renal fibrosis via IL-23 receptor signaling enhanced by PD-1 expression. Immunity, doi:https://doi.org/10.1016/j.immuni.2024.05.004 (2024).


28   Döring, Y. et al. Identification of a non-canonical chemokine-receptor pathway suppressing regulatory T cells to drive atherosclerosis. Nature Cardiovascular Research 3, 221-242, doi:10.1038/s44161-023-00413-9 (2024).


27    Dong, Y. et al. Single-cell profile reveals the landscape of cardiac immunity and identifies a cardio-protective Ym-1(hi) neutrophil in myocardial ischemia-reperfusion injury. Science bulletin 69, 949-967, doi:10.1016/j.scib.2024.02.003 (2024).


26    Chen, W. et al. Single-cell profiling reveals kidney CD163+ dendritic cell participation in human lupus nephritis. Annals of the rheumatic diseases, ard-2023-224788, doi:10.1136/ard-2023-224788 (2024).


25   Wang, Z. et al. Pairing of single-cell RNA analysis and T cell antigen receptor profiling indicates breakdown of T cell tolerance checkpoints in atherosclerosis. Nature Cardiovascular Research 2, 290-306, doi:10.1038/s44161-023-00218-w (2023).


24   Tufanli, O., Citir, M., Yin, C., Van der Vorst, E. P. C. & Cimen, I. Editorial: The connections of immune metabolic mechanisms with aging-related diseases. Frontiers in cell and developmental biology 11, doi:10.3389/fcell.2023.1295264 (2023).


23    Mohanta, S. K., Yin, C., Weber, C. & Habenicht, A. J. R. Neuroimmune cardiovascular interfaces in atherosclerosis. Frontiers in cell and developmental biology 11, 1117368, doi:10.3389/fcell.2023.1117368 (2023).


22    Mohanta, S. K. et al. Cardiovascular Brain Circuits. Circulation research 132, 1546-1565, doi:doi:10.1161/CIRCRESAHA.123.322791 (2023).


21   Mohanta, S. K. et al. The Impact of the Nervous System on Arteries and the Heart: The Neuroimmune Cardiovascular Circuit Hypothesis. Cells 12, doi:10.3390/cells12202485 (2023).


20    Zhang, X. et al. Laser Capture Microdissection-Based mRNA Expression Microarrays and Single-Cell RNA Sequencing in Atherosclerosis Research. Methods Mol Biol 2419, 715-726, doi:10.1007/978-1-0716-1924-7_43 (2022).


19    Wang, Z. et al. Combined Single-Cell RNA and Single-Cell α/β T Cell Receptor Sequencing of the Arterial Wall in Atherosclerosis. Methods Mol Biol 2419, 727-746, doi:10.1007/978-1-0716-1924-7_44 (2022).


18    Sun, T. et al. Tissue Clearing Approaches in Atherosclerosis. Methods Mol Biol 2419, 747-763, doi:10.1007/978-1-0716-1924-7_45 (2022).


17    Mohanta, S. K., Weber, C., Yin, C. & Habenicht, A. J. R. The dawn has come for new therapeutics to treat atherosclerosis: Targeting neuroimmune cardiovascular interfaces in artery brain circuits. Clinical and translational medicine 12, e1040, doi:10.1002/ctm2.1040 (2022).


16    Mohanta, S. K. et al. Neuroimmune cardiovascular interfaces control atherosclerosis. Nature 605, 152-159, doi:10.1038/s41586-022-04673-6 (2022).


15    Habenicht, L. K. L. et al. The C1q-ApoE complex: A new hallmark pathology of viral hepatitis and nonalcoholic fatty liver disease. Frontiers in immunology 13, 970938, doi:10.3389/fimmu.2022.970938 (2022).

14   Varasteh, Z. et al. Imaging atherosclerotic plaques by targeting Galectin-3 and activated macrophages using ((89)Zr)-DFO- Galectin3-F(ab')(2) mAb. Theranostics 11, 1864-1876, doi:10.7150/thno.50247 (2021).


13    Yin, C. et al. ApoE attenuates unresolvable inflammation by complex formation with activated C1q. Nature medicine 25, 496-506, doi:10.1038/s41591-018-0336-8 (2019).


12    Hu, D., Yin, C., Luo, S., Habenicht, A. J. R. & Mohanta, S. K. Vascular Smooth Muscle Cells Contribute to Atherosclerosis Immunity. Frontiers in immunology 10, 1101, doi:10.3389/fimmu.2019.01101 (2019).


11   Yin, C., Mohanta, S., Maffia, P. & Habenicht, A. J. R. Editorial: Tertiary Lymphoid Organs (TLOs): Powerhouses of Disease Immunity. Frontiers in immunology 8, doi:10.3389/fimmu.2017.00228 (2017).


10    Newland, S. A. et al. Type-2 innate lymphoid cells control the development of atherosclerosis in mice. Nature Communications 8, 15781, doi:10.1038/ncomms15781
https://www.nature.com/articles/ncomms15781#supplementary-information (2017).


 Yin, C., Mohanta, S. K., Srikakulapu, P., Weber, C. & Habenicht, A. J. R. Artery Tertiary Lymphoid Organs: Powerhouses of Atherosclerosis Immunity. Frontiers in immunology 7, doi:10.3389/fimmu.2016.00387 (2016).


8  Srikakulapu, P. et al. Artery Tertiary Lymphoid Organs Control Multilayered Territorialized Atherosclerosis B-Cell Responses in Aged ApoE-/- Mice. Arteriosclerosis, thrombosis, and vascular biology 36, 1174-1185, doi:10.1161/ATVBAHA.115.306983 (2016).


7    Mohanta, S., Yin, C., Weber, C., Hu, D. & Habenicht, A. J. Aorta Atherosclerosis Lesion Analysis in Hyperlipidemic Mice. Bio-protocol 6 (2016).


   Hu, D., Yin, C., Mohanta, S. K., Weber, C. & Habenicht, A. J. Preparation of Single Cell Suspensions from Mouse Aorta. Bio-protocol 6 (2016).


5  Yin, C. et al. Generation of Aorta Transcript Atlases of Wild-Type and Apolipoprotein E-null Mice by Laser Capture Microdissection-Based mRNA Expression Microarrays. Methods Mol Biol 1339, 297-308, doi:10.1007/978-1-4939-2929-0_20 (2015).


4    Hu, D. et al. Artery Tertiary Lymphoid Organs Control Aorta Immunity and Protect against Atherosclerosis via Vascular Smooth Muscle Cell Lymphotoxin β Receptors. Immunity 42, 1100-1115, doi:10.1016/j.immuni.2015.05.015 (2015).


   Mohanta, S. K. et al. Artery Tertiary Lymphoid Organs Contribute to Innate and Adaptive Immune Responses in Advanced Mouse Atherosclerosis. Circulation research 114, 1772-1787, doi:10.1161/CIRCRESAHA.114.301137 (2014).


2    Long, Q. et al. Peroxisome proliferator-activated receptor-gamma increases adiponectin secretion via transcriptional repression of endoplasmic reticulum chaperone protein ERp44. Endocrinology 151, 3195-3203, doi:en.2009-1501 [pii]
10.1210/en.2009-1501 (2010).

   Yin, C. et al. Lipid accumulation mediated by adiponectin in C2C12 myogenesis. BMB Rep 42, 667-672 (2009).

2023

2021

2019

2017

2016

2015

2014

2010

2009

PUBLICATIONS

First/Corresponding authored publications by our group are indicated in bold

Publications

First/Corresponding authored publications by our group are indicated in bold

Yin Laboratory, Institute of Precision Medicine

The First Affiliated Hospital, Sun Yan-Sen University​

No.1,Zhongshaner Road,Yuexiu District

510080Guangzhou,China

2024

30   Zhang, Y. et al. CCL19-producing fibroblasts promote tertiary lymphoid structure formation enhancing anti-tumor IgG response in colorectal cancer liver metastasis. Cancer Cell 42, 1370-1385.e1379, doi:https://doi.org/10.1016/j.ccell.2024.07.006 (2024).


29    Liang, Z. et al. Intestinal CXCR6+ ILC3s migrate to the kidney and exacerbate renal fibrosis via IL-23 receptor signaling enhanced by PD-1 expression. Immunity, doi:https://doi.org/10.1016/j.immuni.2024.05.004 (2024).


28   Döring, Y. et al. Identification of a non-canonical chemokine-receptor pathway suppressing regulatory T cells to drive atherosclerosis. Nature Cardiovascular Research 3, 221-242, doi:10.1038/s44161-023-00413-9 (2024).


27    Dong, Y. et al. Single-cell profile reveals the landscape of cardiac immunity and identifies a cardio-protective Ym-1(hi) neutrophil in myocardial ischemia-reperfusion injury. Science bulletin 69, 949-967, doi:10.1016/j.scib.2024.02.003 (2024).


26    Chen, W. et al. Single-cell profiling reveals kidney CD163+ dendritic cell participation in human lupus nephritis. Annals of the rheumatic diseases, ard-2023-224788, doi:10.1136/ard-2023-224788 (2024).

2023

25   Wang, Z. et al. Pairing of single-cell RNA analysis and T cell antigen receptor profiling indicates breakdown of T cell tolerance checkpoints in atherosclerosis. Nature Cardiovascular Research 2, 290-306, doi:10.1038/s44161-023-00218-w (2023).


24   Tufanli, O., Citir, M., Yin, C., Van der Vorst, E. P. C. & Cimen, I. Editorial: The connections of immune metabolic mechanisms with aging-related diseases. Frontiers in cell and developmental biology 11, doi:10.3389/fcell.2023.1295264 (2023).


23    Mohanta, S. K., Yin, C., Weber, C. & Habenicht, A. J. R. Neuroimmune cardiovascular interfaces in atherosclerosis. Frontiers in cell and developmental biology 11, 1117368, doi:10.3389/fcell.2023.1117368 (2023).


22    Mohanta, S. K. et al. Cardiovascular Brain Circuits. Circulation research 132, 1546-1565, doi:doi:10.1161/CIRCRESAHA.123.322791 (2023).


21   Mohanta, S. K. et al. The Impact of the Nervous System on Arteries and the Heart: The Neuroimmune Cardiovascular Circuit Hypothesis. Cells 12, doi:10.3390/cells12202485 (2023).

2022
20    Zhang, X. et al. Laser Capture Microdissection-Based mRNA Expression Microarrays and Single-Cell RNA Sequencing in Atherosclerosis Research. Methods Mol Biol 2419, 715-726, doi:10.1007/978-1-0716-1924-7_43 (2022).


19    Wang, Z. et al. Combined Single-Cell RNA and Single-Cell α/β T Cell Receptor Sequencing of the Arterial Wall in Atherosclerosis. Methods Mol Biol 2419, 727-746, doi:10.1007/978-1-0716-1924-7_44 (2022).


18    Sun, T. et al. Tissue Clearing Approaches in Atherosclerosis. Methods Mol Biol 2419, 747-763, doi:10.1007/978-1-0716-1924-7_45 (2022).


17    Mohanta, S. K., Weber, C., Yin, C. & Habenicht, A. J. R. The dawn has come for new therapeutics to treat atherosclerosis: Targeting neuroimmune cardiovascular interfaces in artery brain circuits. Clinical and translational medicine 12, e1040, doi:10.1002/ctm2.1040 (2022).


16    Mohanta, S. K. et al. Neuroimmune cardiovascular interfaces control atherosclerosis. Nature 605, 152-159, doi:10.1038/s41586-022-04673-6 (2022).


15    Habenicht, L. K. L. et al. The C1q-ApoE complex: A new hallmark pathology of viral hepatitis and nonalcoholic fatty liver disease. Frontiers in immunology 13, 970938, doi:10.3389/fimmu.2022.970938 (2022).​​

 

2021
14   Varasteh, Z. et al. Imaging atherosclerotic plaques by targeting Galectin-3 and activated macrophages using ((89)Zr)-DFO- Galectin3-F(ab')(2) mAb. Theranostics 11, 1864-1876, doi:10.7150/thno.50247 (2021).

2019
13    Yin, C. et al. ApoE attenuates unresolvable inflammation by complex formation with activated C1q. Nature medicine 25, 496-506, doi:10.1038/s41591-018-0336-8 (2019).


12    Hu, D., Yin, C., Luo, S., Habenicht, A. J. R. & Mohanta, S. K. Vascular Smooth Muscle Cells Contribute to Atherosclerosis Immunity. Frontiers in immunology 10, 1101, doi:10.3389/fimmu.2019.01101 (2019).

2017
11   Yin, C., Mohanta, S., Maffia, P. & Habenicht, A. J. R. Editorial: Tertiary Lymphoid Organs (TLOs): Powerhouses of Disease Immunity. Frontiers in immunology 8, doi:10.3389/fimmu.2017.00228 (2017).


10    Newland, S. A. et al. Type-2 innate lymphoid cells control the development of atherosclerosis in mice. Nature Communications 8, 15781, doi:10.1038/ncomms15781
https://www.nature.com/articles/ncomms15781#supplementary-information (2017).

​​

2016
9   Yin, C., Mohanta, S. K., Srikakulapu, P., Weber, C. & Habenicht, A. J. R. Artery Tertiary Lymphoid Organs: Powerhouses of Atherosclerosis Immunity. Frontiers in immunology 7, doi:10.3389/fimmu.2016.00387 (2016).


8  Srikakulapu, P. et al. Artery Tertiary Lymphoid Organs Control Multilayered Territorialized Atherosclerosis B-Cell Responses in Aged ApoE-/- Mice. Arteriosclerosis, thrombosis, and vascular biology 36, 1174-1185, doi:10.1161/ATVBAHA.115.306983 (2016).


7    Mohanta, S., Yin, C., Weber, C., Hu, D. & Habenicht, A. J. Aorta Atherosclerosis Lesion Analysis in Hyperlipidemic Mice. Bio-protocol 6 (2016).


   Hu, D., Yin, C., Mohanta, S. K., Weber, C. & Habenicht, A. J. Preparation of Single Cell Suspensions from Mouse Aorta. Bio-protocol 6 (2016).

2015​​
5  Yin, C. et al. Generation of Aorta Transcript Atlases of Wild-Type and Apolipoprotein E-null Mice by Laser Capture Microdissection-Based mRNA Expression Microarrays. Methods Mol Biol 1339, 297-308, doi:10.1007/978-1-4939-2929-0_20 (2015).


4    Hu, D. et al. Artery Tertiary Lymphoid Organs Control Aorta Immunity and Protect against Atherosclerosis via Vascular Smooth Muscle Cell Lymphotoxin β Receptors. Immunity 42, 1100-1115, doi:10.1016/j.immuni.2015.05.015 (2015).

​​

2014
3    Mohanta, S. K. et al. Artery Tertiary Lymphoid Organs Contribute to Innate and Adaptive Immune Responses in Advanced Mouse Atherosclerosis. Circulation research 114, 1772-1787, doi:10.1161/CIRCRESAHA.114.301137 (2014).

2010​​
2    Long, Q. et al. Peroxisome proliferator-activated receptor-gamma increases adiponectin secretion via transcriptional repression of endoplasmic reticulum chaperone protein ERp44. Endocrinology 151, 3195-3203, doi:en.2009-1501 [pii]
10.1210/en.2009-1501 (2010).

2009

1    Yin, C. et al. Lipid accumulation mediated by adiponectin in C2C12 myogenesis. BMB Rep 42, 667-672 (2009).

Yin Laboratory, Institute of Precision Medicine

The First Affiliated Hospital, Sun Yan-Sen University​

No.1,Zhongshaner Road,Yuexiu District

510080Guangzhou,China

bottom of page